Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 130: 111758, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38422771

RESUMO

Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) represents a predominant etiology of non-traumatic osteonecrosis, imposing substantial pain, restricting hip mobility, and diminishing overall quality of life for affected individuals. Centella asiatica (L.) Urb. (CA), an herbal remedy deeply rooted in traditional oriental medicine, has exhibited noteworthy therapeutic efficacy in addressing inflammation and facilitating wound healing. Drawing from CA's historical applications, its anti-inflammatory, anti-apoptotic, and antioxidant attributes may hold promise for managing GIONFH. Asiatic acid (AA), a primary constituent of CA, has been substantiated as a key contributor to its anti-apoptotic, antioxidant, and anti-inflammatory capabilities, showcasing a close association with orthopedic conditions. For the investigation of whether AA could alleviate GIONFH through suppressing oxidative stress, apoptosis, and to delve into its potential cellular and molecular mechanisms, the connection between AA and disease was analyzed through network pharmacology. DEX-induced apoptosis in rat osteoblasts and GIONFH in rat models, got utilized for the verification in vitro/vivo, on underlying mechanism of AA in GIONFH. Network pharmacology analysis reveals a robust correlation between AA and GIONFH in multiple target genes. AA has demonstrated the inhibition of DEX-induced osteoblast apoptosis by modulating apoptotic factors like BAX, BCL-2, Cleaved-caspase3, and cleaved-caspase9. Furthermore, it effectively diminishes the ROS overexpression and regulates oxidative stress through mitochondrial pathway. Mechanistic insights suggest that AA's therapeutic effects involve phosphatidylinositol 3-kinase/Protein kinase B (PI3K/AKT) pathway activation. Additionally, AA has exhibited its potential to ameliorate GIONFH progression in rat models. Our findings revealed that AA mitigated DEX-induced osteoblast apoptosis and oxidative stress through triggering PI3K/AKT pathway. Also, AA can effectively thwart GIONFH occurrence and development in rats.


Assuntos
Glucocorticoides , Osteonecrose , Triterpenos Pentacíclicos , Ratos , Animais , Glucocorticoides/uso terapêutico , Glucocorticoides/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Antioxidantes/farmacologia , Cabeça do Fêmur , Qualidade de Vida , Anti-Inflamatórios/farmacologia , Apoptose
2.
Int Immunopharmacol ; 127: 111421, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38157694

RESUMO

BACKGROUND: Prolonged use of glucocorticoids (GCs) potentially lead to a condition known as GCs-induced osteonecrosis of the femoral head (GIONFH). The primary mechanisms underlying this phenomenon lies in stem cells and endothelial cells dysfunctions. Morroniside, an iridoid glycoside sourced from Cornus officinalis, possesses numerous biological capabilities, including combating oxidative stress, preventing apoptosis, opposing ischemic effects, and promoting the regeneration of bone tissue. PURPOSE: This study aimed to analyze the impact of Morroniside on Dexamethasone (DEX)-induced dysfunction in stem cells and endothelial cells, and its potential as a therapeutic agent for GIONFH in rat models. METHODS: ROS assay, JC-1 assay, and TUNEL assay were used to detect oxidative stress and apoptosis levels in vitro. For the evaluation of the osteogenic capability of bone marrow-derived mesenchymal stem cells, we employed ALP and ARS staining. Additionally, the angiogenic ability of endothelial cells was assessed using tube formation assay and migration assay. Microcomputed tomography analysis, hematoxylin-eosin staining, and immunohistochemical staining were utilized to evaluate the in vivo therapeutic efficacy of Morroniside. RESULTS: Morroniside mitigates DEX-induced excessive ROS expression and cell apoptosis, effectively reducing oxidative stress and alleviating cell death. In terms of osteogenesis, Morroniside reverses DEX-induced osteogenic impairment, as evidenced by enhanced ALP and ARS staining, as well as increased osteogenic protein expression. In angiogenesis, Morroniside counteracts DEX-induced vascular dysfunction, demonstrated by an increase in tube-like structures in tube formation assays, a rise in the number of migrating cells, and elevated levels of angiogenic proteins. In vivo, our results further indicate that Morroniside alleviates the progression of GIONFH. CONCLUSION: The experimental findings suggest that Morroniside concurrently mitigates stem cell and endothelial cell dysfunction through the PI3K/AKT signaling pathway both in vitro and in vivo. These outcomes suggest that Morroniside serves as a potential therapeutic agent for GIONFH.


Assuntos
Glucocorticoides , Glicosídeos , Osteonecrose , Ratos , Animais , Glucocorticoides/uso terapêutico , Glucocorticoides/farmacologia , Células Endoteliais , Espécies Reativas de Oxigênio , Cabeça do Fêmur , Microtomografia por Raio-X , Fosfatidilinositol 3-Quinases/farmacologia , Células-Tronco , Osteogênese , Glicosídeos Iridoides
3.
J Nanobiotechnology ; 21(1): 486, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105181

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease characterized by progressive cartilage degradation and inflammation. In recent years, mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) have attracted widespread attention for their potential role in modulating OA pathology. However, the unpredictable therapeutic effects of exosomes have been a significant barrier to their extensive clinical application. In this study, we investigated whether fucoidan-pretreated MSC-derived exosomes (F-MSCs-Exo) could better protect chondrocytes in osteoarthritic joints and elucidate its underlying mechanisms. In order to evaluate the role of F-MSCs-Exo in osteoarthritis, both in vitro and in vivo studies were conducted. MiRNA sequencing was employed to analyze MSCs-Exo and F-MSCs-Exo, enabling the identification of differentially expressed genes and the exploration of the underlying mechanisms behind the protective effects of F-MSCs-Exo in osteoarthritis. Compared to MSCs-Exo, F-MSCs-Exo demonstrated superior effectiveness in inhibiting inflammatory responses and extracellular matrix degradation in rat chondrocytes. Moreover, F-MSCs-Exo exhibited enhanced activation of autophagy in chondrocytes. MiRNA sequencing of both MSCs-Exo and F-MSCs-Exo revealed that miR-146b-5p emerged as a promising candidate mediator for the chondroprotective function of F-MSCs-Exo, with TRAF6 identified as its downstream target. In conclusion, our research results demonstrate that miR-146b-5p encapsulated in F-MSCs-Exo effectively inhibits TRAF6 activation, thereby suppressing inflammatory responses and extracellular matrix degradation, while promoting chondrocyte autophagy for the protection of osteoarthritic cartilage cells. Consequently, the development of a therapeutic approach combining fucoidan with MSC-derived exosomes provides a promising strategy for the clinical treatment of osteoarthritis.


Assuntos
Condrócitos , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Animais , Ratos , Condrócitos/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/farmacologia
4.
Int Immunopharmacol ; 122: 110587, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37399606

RESUMO

BACKGROUND: Osteoarthritis (OA) is a widely prevalent degenerative disease marked by extracellular matrix (ECM) degradation, inflammation, and apoptosis. Taxifolin (TAX) is a natural antioxidant possessing various pharmacological benefits, such as combating inflammation, oxidative stress, apoptosis, and serves as a potential chemopreventive agent by regulating genes through an antioxidant response element (ARE)-dependent mechanism. Currently, no studies have investigated the therapeutic impact and precise mechanism of TAX on OA. PURPOSE: The aim of this study is to examine the potential role and mechanism of TAX in reshaping the cartilage microenvironment, thereby offering a stronger theoretical foundation for pharmacologically activating the Nrf2 pathway to manage OA. STUDY DESIGN AND METHODS: The pharmacological effects of TAX were examined in chondrocytes through in vitro studies and in a destabilization of the medial meniscus (DMM) rat model for in vivo analysis. RESULTS: TAX suppresses IL-1ß triggered secretion of inflammatory agents, chondrocyte apoptosis, and ECM degradation, contributing to the remodeling of the cartilage microenvironment. In vivo experiment results demonstrated that TAX counteracted cartilage degeneration induced by DMM in rats. Mechanistic investigations revealed that TAX hinders OA development by reducing NF-κB activation and ROS production through the activation of the Nrf2/HO-1 axis. CONCLUSION: TAX reshapes the articular cartilage microenvironment by suppressing inflammation, mitigating apoptosis, and decreasing ECM degradation through the activation of the Nrf2 pathway. As a result, pharmacological activation of the Nrf2 pathway by TAX holds potential clinical significance in remodeling the joint microenvironment for OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Inflamação/tratamento farmacológico , Condrócitos , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...